NANOVISUAL
教學(xué)型掃描隧道顯微鏡
NanoVisual是針對高等院校實驗課程和中學(xué)素質(zhì)教育而設(shè)計的教學(xué)型掃描隧道顯微鏡(STM)。 為了適應(yīng)教學(xué)要求,NanoVisual去繁就簡,掃描部件高度集成,操作流程簡練便捷,具備工作原理清晰、穩(wěn)定性優(yōu)越等特點。在線控制軟件和后處理軟件用戶界面友好,輔以生動的教學(xué)課件,引導(dǎo)學(xué)生輕松掌握掃描隧道顯微鏡的原理和基本操作方法。 NanoVisual掃描隧道顯微鏡(STM)具有一定的可擴充性,可以根據(jù)需要增加某些功能部件,從而具備一定科研能力。
主要性能
- 簡約化的掃描隧道顯微鏡(STM)探頭,初學(xué)者只需經(jīng)簡單的培訓(xùn)即可掌握操作方法
- 具有I-V曲線等測量分析功能
- 具有圖形刻蝕模式和矢量掃描模式的納米加工技術(shù)
- 樣品尺寸直徑30mm、厚度10mm
- 主控制系統(tǒng)采用德州儀器(TI)32位數(shù)字信號處理器(DSP),每秒可實現(xiàn)高達10億次32位運算
- 主控制系統(tǒng)采用10M/100M快速以太網(wǎng)(Fast Ethernet 10/100)與計算機連接
- 全數(shù)字控制,系統(tǒng)狀態(tài)、儀器類型、掃描器和探針架參數(shù)智能識別和控制
- 基于Windows 11/10/8/7/Vista/XP/2000/9X的在線控制軟件和后處理分析軟件
- 掃描圖像BMP/TIFF全兼容文件格式,當(dāng)前全部工作環(huán)境參數(shù)同步保存
- 針尖表征及圖像重建功能(針尖形貌估計/圖像重建/用已知針尖重建圖像)
- 按功能模塊劃分的縱向插卡式結(jié)構(gòu),便于日后系統(tǒng)維護和升級
- 可附加第二顯示器和光學(xué)顯微輔助系統(tǒng)
- 技術(shù)指標(biāo)(NanoVisual教學(xué)型掃描隧道顯微鏡)
系統(tǒng)功能
- 掃描隧道顯微鏡(STM)
- 納米加工和操縱,包括圖形刻蝕模式和矢量掃描模式
分辨率
- 橫向 0.1nm, 垂直 0.01nm(以石墨晶體標(biāo)定)
參數(shù)性能
- 電流檢測靈敏度:≤10pA
- 圖像分辨率:128X128,256X256,512X512,1024X1024
- 掃描角度:0~360°
- 掃描頻率:0.1~100Hz
- 預(yù)置隧道電流:0.1~10nA
- 偏置電壓:-2~+2V
電子控制系統(tǒng)
- 中央處理器:德州儀器(TI)32位數(shù)字信號處理器(DSP),運算速度150MHz
- 8通道16-bit DAC,建立時間1.5微秒
- 8通道16-bit ADC,采樣率500kHz
- 通信接口:10M/100M快速以太網(wǎng)(Fast Ethernet 10/100)接口
機械性能
- 樣品尺寸:最大可達直徑30mm,厚度10mm
- 全自動步進電機控制進樣系統(tǒng)
軟件系統(tǒng)
- 基于Windows 11/10/8/7/Vista/XP/2000/9X的在線控制軟件和后處理軟件
?
附錄:
掃描隧道顯微鏡(STM)的原理
1.掃描隧道顯微鏡(STM)[1],[2]
? ? ? ?掃描隧道顯微鏡(STM)的基本原理是利用量子理論中的隧道效應(yīng)。將原子線度的極細探針和被研究物質(zhì)的表面作為兩個電極,當(dāng)樣品與針尖的距離非常接近時(通常小于1nm),在外加電場的作用下,電子會穿過兩個電極之間的勢壘流向另一電極。這種現(xiàn)象即是隧道效應(yīng)。隧道電流I是電子波函數(shù)重疊的量度,與針尖和樣品之間距離S和平均功函數(shù)Φ有關(guān):

? ? ? ?式中,Vb是加在針尖和樣品之間的偏置電壓,平均功函數(shù)Φ=(Φ1+Φ2)/2,Φ1和Φ2分別為針尖和樣品的功函數(shù),A為常數(shù),在真空條件下約等于1。掃描探針一般采用直徑小于1mm的細金屬絲,如鎢絲、鉑―銥絲等;被觀測樣品應(yīng)具有一定導(dǎo)電性才可以產(chǎn)生隧道電流。
? ? ? ?由上式可知,隧道電流強度對針尖與樣品表面之間距非常敏感,如果距離S減小0.1nm,隧道電流I將增加一個數(shù)量級,因此,利用電子反饋線路控制隧道電流的恒定,并用壓電陶瓷材料控制針尖在樣品表面的掃描,則探針在垂直于樣品方向上高低的變化就反映出了樣品表面的起伏,見圖1(a)。將針尖在樣品表面掃描時運動的軌跡直接在熒光屏或記錄紙上顯示出來,就得到了樣品表面態(tài)密度的分布或原子排列的圖象。這種掃描方式可用于觀察表面形貌起伏較大的樣品,且可通過加在z向驅(qū)動器上的電壓值推算表面起伏高度的數(shù)值,這是一種常用的掃描模式。對于起伏不大的樣品表面,可以控制針尖高度守恒掃描,通過記錄隧道電流的變化亦可得到表面態(tài)度的分布。這種掃描方式的特點是掃描速度快,能夠減少噪音和熱漂移對信號的影響,但一般不能用于觀察表面起伏大于1nm的樣品。
圖1.掃描模式示意圖
? ? ? ?其中(a)恒電流模式,(b)恒高度模式,S 為針尖與樣品間距,I為隧道電流,Vb 為偏置電壓,Vz為控制針尖在 z 方向高度的反饋電壓。
? ? ? ?從上式可知,在Vb和I保持不變的掃描過程中,如果功函數(shù)隨樣品表面的位置而異,也同樣會引起探針與樣品表面間距S的變化,因而也引起控制針尖高度的電壓Vz的變化。如樣品表面原子種類不同,或樣品表面吸附有原子、分子時,由于不同種類的原子或分子團等具有不同的電子態(tài)密度和功函數(shù),此時掃描隧道顯微鏡(STM)給出的等電子態(tài)密度輪廓不再對應(yīng)于樣品表面原子的起伏,而是表面原子起伏與不同原子和各自態(tài)密度組合后的綜合效果。掃描隧道顯微鏡(STM)不能區(qū)分這兩個因素,但用掃描隧道譜(STS)方法卻能區(qū)分。利用表面功函數(shù)、偏置電壓與隧道電流之間的關(guān)系,可以得到表面電子態(tài)和化學(xué)特性的有關(guān)信息。
? ? ? ?如前所述,掃描隧道顯微鏡(STM)儀器本身具有的諸多優(yōu)點,使它在研究物質(zhì)表面結(jié)構(gòu)、生物樣品及微電子技術(shù)等領(lǐng)域中成為很有效的實驗工具。例如生物學(xué)家們研究單個的蛋白質(zhì)分子或DNA分子;材料學(xué)家們考察晶體中原子尺度上的缺陷;微電子器件工程師們設(shè)計厚度僅為幾十個原子的電路圖等,都可利用掃描隧道顯微鏡(STM)儀器。在掃描隧道顯微鏡(STM)問世之前,這些微觀世界還只能用一些煩瑣的、往往是破壞性的方法來進行觀測。而掃描隧道顯微鏡(STM)則是對樣品表面進行無損探測,避免了使樣品發(fā)生變化,也無需使樣品受破壞性的高能輻射作用。另外,任何借助透鏡來對光或其它輻射進行聚焦的顯微鏡都不可避免的受到一條根本限制:光的衍射現(xiàn)象。由于光的衍射,尺寸小于光波長一半的細節(jié)在顯微鏡下將變得模糊。而掃描隧道顯微鏡(STM)則能夠輕而易舉地克服這種限制,因而可獲得原子級的高分辨率。表1列出了掃描隧道顯微鏡(STM)與電子顯微鏡EM(包括掃描電鏡SEM和透射電鏡TEM)、場離子顯微鏡(FIM)的幾項綜合性能指標(biāo),讀者從這些性能指標(biāo)對比中可體會到掃描隧道顯微鏡(STM)儀器的優(yōu)點和特點。
表1 ?STM與EM、FIM的各項性能指標(biāo)比較
? ? ? ?從掃描隧道顯微鏡(STM)的工作原理可知,在掃描隧道顯微鏡(STM)觀測樣品表面的過程中,掃描探針的結(jié)構(gòu)所起的作用是很重要的。如針尖的曲率半徑是影響橫向分辨率的關(guān)鍵因素;針尖的尺寸、形狀及化學(xué)同一性不僅影響到掃描隧道顯微鏡(STM)圖象的分辨率,而且還關(guān)系到電子結(jié)構(gòu)的測量。因此,精確地觀測描述針尖的幾何形狀與電子特性對于實驗質(zhì)量的評估有重要的參考價值。掃描隧道顯微鏡(STM)的研究者們曾采用了一些其它技術(shù)手段來觀察掃描隧道顯微鏡(STM)針尖的微觀形貌,如SEM、TEM、FIM等。SEM一般只能提供微米或亞微米級的形貌信息,顯然對于原子級的微觀結(jié)構(gòu)觀察是遠遠不夠的。雖然用高分辨TEM可以得到原子級的樣品圖象,但用于觀察掃描隧道顯微鏡(STM)針尖則較為困難,而且它的原子級分辨率也只是勉強可以達到。只有FIM能在原子級分辨率下觀察掃描隧道顯微鏡(STM)金屬針尖的頂端形貌,因而成為掃描隧道顯微鏡(STM)針尖的有效觀測工具。日本Tohoku大學(xué)的櫻井利夫等人利用了FIM的這一優(yōu)勢制成了FIM-STM聯(lián)用裝置(研究者稱之為FI-STM)[3],可以通過FIM在原子級水平上觀測掃描隧道顯微鏡(STM)掃描針尖的幾何形狀,這使得人們能夠在確知掃描隧道顯微鏡(STM)針尖狀態(tài)的情況下進行實驗,從而提高了使用掃描隧道顯微鏡(STM)儀器的有效率。
? ? ? ?掃描隧道顯微鏡(STM)在化學(xué)中的應(yīng)用研究雖然只進行了幾年,但涉及的范圍已極為廣泛。因為掃描隧道顯微鏡(STM)的最早期研究工作是在超高真空中進行的,因此最直接的化學(xué)應(yīng)用是觀察和記錄超高真空條件下金屬原子在固體表面的吸附結(jié)構(gòu)。在化學(xué)各學(xué)科的研究方向中,電化學(xué)可算是很活躍的領(lǐng)域,可能是因為電解池與掃描隧道顯微鏡(STM)裝置的相似性所致。同時對相界面結(jié)構(gòu)的再認識也是電化學(xué)家們長期關(guān)注的課題。專用于電化學(xué)研究的掃描隧道顯微鏡(STM)裝置已研制成功。
? ? ? ?在有機分子結(jié)構(gòu)的研究中,高分辨率的掃描隧道顯微鏡(STM)三維直觀圖象是一種極為有用的工具。此法已成功地觀察到苯在Rh(111)表面的單層吸附,并顯示清晰的Kekule環(huán)狀結(jié)構(gòu)。在生物學(xué)領(lǐng)域,掃描隧道顯微鏡(STM)已用來直接觀察DNA、重組DNA及HPI-蛋白質(zhì)等在載體表面吸附后的外形結(jié)構(gòu)。
? ? ? ?可以預(yù)測,對于許多溶液相的化學(xué)反應(yīng)機理研究,如能移置到載體表面進行,掃描隧道顯微鏡(STM)也不失為一個可以嘗試的測試手段,通過它可觀察到原子間轉(zhuǎn)移的直接過程。對于膜表面的吸附和滲透過程,掃描隧道顯微鏡(STM)方法可能描繪出較為詳細的機理。這一方法在操作上和理解上簡單直觀,獲得數(shù)據(jù)后無需作任何繁瑣的后續(xù)數(shù)據(jù)處理就可直接顯示或繪圖,而且適用于很多介質(zhì),因此將會在其應(yīng)用研究領(lǐng)域展現(xiàn)出廣闊的前景。
? ? ? ? 繼掃描隧道顯微鏡(STM)之后,各國科技工作者在掃描隧道顯微鏡(STM)原理基礎(chǔ)上又發(fā)明了一系列新型顯微鏡[4]。它們包括 :原子力顯微鏡(AFM)、激光力顯微鏡(LFM)、靜電力顯微鏡、掃描熱顯微鏡、彈道電子發(fā)射顯微鏡(BEEM)、掃描隧道電位儀(STP)、掃描離子電導(dǎo)顯微鏡(SICM)、掃描近場光學(xué)顯微鏡(SNOM,在1956年設(shè)想基礎(chǔ)上的改進)和光子掃描隧道顯微鏡(PSTM)等。這些新型顯微鏡的發(fā)明為探索物質(zhì)表面或界面的特性,如表面不同部位的磁場、靜電場、熱量散失、離子流量、表面摩擦力以及在擴大可測樣品范圍方面提供了有力的工具。近幾年來,在把STM與EM、FIM以及AFM、LEED等其它表面分析手段聯(lián)用方面,也取得了可喜的進展。目前最小的掃描隧道顯微鏡(STM)尺寸僅為125μm,而最大的掃描范圍可達100μm。
2.掃描隧道顯微鏡(STM)的局限性與發(fā)展[5]
? ?? ? 盡管掃描隧道顯微鏡(STM)有著EM、FIM等儀器所不能比擬的諸多優(yōu)點,但由于儀器本身的工作方式所造成的局限性也是顯而易見的。這主要表現(xiàn)在以下兩個方面:
? ? ? ?(1)在掃描隧道顯微鏡(STM)的恒電流工作模式下,有時它對樣品表面微粒之間的某些溝槽不能夠準確探測,與此相關(guān)的分辨率較差。圖2摘自對鉑超細粉末的一個研究實例[6]。它形象地顯示了掃描隧道顯微鏡(STM)在這種探測方式上的缺陷。鉑粒子之間的溝槽被探針掃描過的曲面所蓋,在形貌圖上表現(xiàn)得很窄,而鉑粒子的粒徑卻因此而被增大了。在TEM的觀測中則不會出現(xiàn)這種問題。

圖2.STM恒電流工作方式觀測超細金屬微粒(Pt/C樣品)
? ? ? ?在恒高度工作方式下,從原理上這種局限性會有所改善。但只有采用非常尖銳的探針,其針尖半徑應(yīng)遠小于粒子之間的距離,才能避免這種缺陷。在觀測超細金屬微粒擴散時,這一點顯得尤為重要。
? ? ? ? (2)掃描隧道顯微鏡(STM)所觀察的樣品必須具有一定程度的導(dǎo)電性,對于半導(dǎo)體,觀測的效果就差于導(dǎo)體;對于絕緣體則根本無法直接觀察。如果在樣品表面覆蓋導(dǎo)電層,則由于導(dǎo)電層的粒度和均勻性等問題又限制了圖象對真實表面的分辨率。賓尼等人1986年研制成功的AFM可以彌補掃描隧道顯微鏡(STM)這方面的不足。
? ? ?? 此外,在目前常用的(包括商品)掃描隧道顯微鏡(STM)儀器中,一般都沒有配備FIM,因而針尖形狀的不確定性往往會對儀器的分辨率和圖象的認證與解釋帶來許多不確定因素。
? ? ? ?盡管掃描隧道顯微鏡(STM)問世的時間很短,但經(jīng)過各國科學(xué)家的努力,掃描隧道顯微鏡(STM)技術(shù)已得到了迅速的發(fā)展,在許多方面顯示出其獨特的優(yōu)點。相信隨著掃描隧道顯微鏡(STM)理論與技術(shù)的日臻完善,掃描隧道顯微鏡(STM)及其相關(guān)技術(shù)必將在人類認識微觀世界的進程中發(fā)揮越來越大的作用。
參考文獻
[1] 白春禮,大學(xué)化學(xué),1989,3,1.
[2] Binnig, G. and Rohrer, H., Angew. Chem. Int. Ed. Engl. 1987,26,606.
[3] Sakurai, T. et al., Prog. Surf. Sci., 1990,33,3.
[4] Wickramasinghe, H.K. et al., Scientific American, 1989,10,74.
[5] 白春禮,郭軍,石油化工,1992,1.
[6] Masaharu, K. et al., J. Microscopy, 1988,152910,197.